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Preamble

"Ce qui est simple est toujours faux.
Ce qui ne l'est pas est inutilisable.”

Paul Valéry




S
Tutorial... with R!

Material available at:
https://github.com/DynamiteStaff/R- workshops%

A friendly advice: clone the repository now (200 Mo to download)!



https://github.com/DynamiteStaff/R-workshops/ML
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1. Introduction




Introduction: Learning from data...

"Learning” is the central task of artificial intelligence (Al):
m the field is currently moving a lot (new problems, new solutions, ...),
= |earning is some situations is still a challenging problem:
U high-dimensional (p large),
U big or as stream (n large),
U heterogeneous (categorical, functional, networks, texts, ...).

There are important needs (lot of expectations also!) in many fields of Science:
® Medicine / Biology,
m Astrophysics,
® Digital Humanities,



A motivating example: cytology

Cytology:
B it is the study of cells in terms of structure, function and chemistry,
m for the diagnosis of disease (we focused on cervical cancer).
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Figure: Normal (left) and abnormal (right) pap smears.

Cervical cancer detection:
® it is an important public health field which is currently treated mostly manually,
m screening by human experts is complicated by the amount of cells (20 000/smear),

® and by the very small proportion of cancer cells (less than 1%).
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e
A motivating example: cytology

Our data (BC Cancer Agency):
® 20 smears which contains between 4 000 and 10 000 cells,
m each nucleus is described by 111 features (morphological, photometric or texture features),

= only 0.52% of the cells are diseased cells.

Classification is useful in this context:
= for building supervised classifiers which can select the most likely cancer cells,
= for helping experts in labeling the learning data through weakly-supervised classification,

m for selecting discriminative variables which can be used in a semi-automatic process.
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Figure: Control and (cervical) cancer data.




Introduction: Learning from data...

One task, several families of approaches: A
m Statistical learning ! % P j
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® Machine learning
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® Deep learning
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Introduction: Learning from data...

Learning is a two-head problem:

Supervised Unsupervised
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Introduction: Learning from data...

Methods are specific to each task:

Supervised Unsupervised
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Introduction: Supervised learning

Supervised learning is also a field with different sub-tasks:

m classification:
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B regression:
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2. The supervised learning process




The supervised learning process

The material: a set of (complete) data
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The goal: learn a predictor f(.) from the (complete) data
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Measuring the learning performance

One comfortable thing of working in the supervised context is:

® to be able to measure the performance of the learned predictor,
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m compare several predictors and pick the most efficient one.
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A minimal setup for supervised learning

The minimal setup for building a supervised predictor f() from data is as follows:




Why such a minimal setup?

The goal is to avoid over-fitting when choosing the model or the model parameters:
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An advanced setup for supervised learning

Resampling techniques:

® there are several methods (leave-one-out, V-fold cross-validation, bootstrap) depending on
the context (sample size, computing time, ...),

m V-fold cross-validation:
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3. A selection of supervised learning methods




K-Nearest Neighbors (KNN)

K-nearest neighbors (KNN) is probably the most simple classification method (not really a

learning method in fact):
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K-Nearest Neighbors (KNN)

Pros / cons:
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Within R: function knn () in the class package or knn3 () in the caret package.
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Logistic regression

The logistic regression turns the classification problem into a regression one thanks to the
logistic function:
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Logistic regression

Pros / cons:
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Within R: function glm() in the base package.
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Linear Discriminant Analysis (LDA)

LDA (Fisher, 1936) is a generative classification method (as most of the "xxDA" methods):
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Linear Discriminant Analysis (LDA)

Classification (MAP) rule for a new observation x:

y = argmink{#i):_lpk —2ut Y tx — 2log(mi) + CS'}.
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Fig. Decision boundaries for QDA (left) and LDA (right).

Pros / cons:
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Within R: function 1da () in the MASS package. gu /""L
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High-Dimensional Discriminant Analysis (HDDA)

HDDA (Bouveyron et al., 2007) is a generative method designed for high-dimensional data:
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High-Dimensional Discriminant Analysis (HDDA)

Classification (MAP) rule for a new observation x:

Hk o = PLGITE D log(ar) + (1 — e ogbi) — 2log(my)

Fig. Modeling of the classes into low-dimensional subspaces.

Pros / cons:
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Within R: function hdda () in the HDclassif package or the caret package. i
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Support Vector Machines (SVM)

The idea of SVM is:
B to project the data into a high-dimensional space in order to ease the classification task,

® and to use a linear classifier in the projection space (feature space),
m the "kernel trick” allows to perform all calculations from the data.
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Support Vector Machines (SVM)

The kernel trick: how to optimize into the feature space directly from the observed data points.
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Within R: function sum() in the e1071 package or function|sumRadial () in caret.
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Classification trees and random forest

The idea of classification (and regression) trees (CART) is to:
® choose a variable at each step that best splits the set of data in term of classification,
® according to some metric, usually the Geni impurity index:
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where pr« = 137 1{x; € 7}.
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Decision trees and random forest ‘
Random forest: @ valable (Mfmr“vce P avenz

® the aim is to robustify CART by a better exploration of the solution space, Aobusk
® by sampling both on observations and variables to create B solutions, @ &gs M

® on which the solution is averaged. /m/'afqe
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Trees, forests and boosting: %

® it is again possible to robustify CART and RF with boosting,
® the idea is to more importance to the observations which are difficult to classify
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Within R: functions zgbtree() and zgboost () in the caret package.
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4. Deep learning
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5. Tutorial: Classification of road patterns
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